B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS) (Applicable from the academic year 2025-26 and onwards)

B. Tech. - III Year I Semester

S.No.	Category	Title	L	T	P	C
1	Professional Core	Deep Learning(V231316131)	3	0	0	3
2	Professional Core	Computer Networks(V231316132)	3	0	0	3
3	Professional Core	Natural Language Processing(V231316133)	3	0	0	3
4	Professional Elective-I	Object Oriented Analysis and Design(V23131C341)	3	0	0	3
5	Open Elective- I	Renewable Energy Resources(V231310251)	3	0	0	3
6	Professional Core	Deep Learning Lab((V231316161)	0	0	3	1.5
7	Professional Core	Natural Language Processing Lab(V231316162)	0	0	3	1.5
8	Skill Enhancement course	Full Stack Development -2 (V231316163)	0	1	2	2
9	ES	Tinkering Lab (User Interface Design using Flutter) (V231316166)	0	0	2	1
10	Evaluation of Comm	unity Service Internship	-	-	-	2
	Total		15	01	10	23
MC	Student may select fr	om the same Minor Pool	3	0	3	4.5
MC	Minor Course throug (Minimum 12 Week,	h SWAYAM / NPTEL 3 credit course)	3	0	0	3
НС	Student may select fr	om the same Honor's Pool	3	0	0	3
НС	Student may select fr	om the same Honor's Pool	3	0	0	3
			L	Т	P	C

(An Autonomous Institution)

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

III B. Tech I Semester	DEEP	3	0	0	3
	LEARNING(V231316131)				i

CourseObjectives:

• Theobjectiveofthiscourseistocoverthefundamentalsofneuralnetworksaswell as some advanced topics such as recurrent neural networks, long short-term memory cells and convolution neural networks.

CourseOutcomes: Aftercompletionofcourse, students would be able to:

- $1. \ Explore feed forward networks and Deep Neural networks$
- 2. Mathematicallyunderstandthedeeplearningapproachesandparadigms
- 3. Applythedeeplearningtechniquesforvariousapplications

UNIT-I: Basics- Biological Neuron, Idea of computational units, McCulloch–Pitts unit and Thresholding logic, Linear Perceptron, Perceptron Learning Algorithm, Linear separability, Convergence theorem for Perceptron Learning Algorithm.

UNIT-II:FeedforwardNetworks-MultilayerPerceptron,GradientDescent,Backpropagation, Empirical Risk Minimization, regularization, autoencoders.

DeepNeuralNetworks:Difficultyoftrainingdeepneuralnetworks,Greedylayer wise training.

UNIT-III: BetterTrainingofNeuralNetworks-Neweroptimizationmethodsforneural networks (Adagrad, adadelta, rmsprop, adam, NAG), second order methods for training, Saddlepointprobleminneuralnetworks, Regularizationmethods (dropout, drop connect, batch normalization).

UNIT-IV:Recurrent Neural Networks- Back propagation through time, Long Short-Term Memory, Gated Recurrent Units, Bidirectional LSTMs, Bidirectional RNNs.

Convolutional Neural Networks: LeNet, AlexNet. Generative models: Restrictive Boltzmann Machines (RBMs), Introduction to MCMC and Gibbs Sampling, gradient computations in RBMs, Deep Boltzmann Machines.

UNIT-V:Recenttrends-VariationalAutoencoders,Transformers,GPT Applications:Vision, NLP, Speech

TextBooks:

1. DeepLearning, Ian Good fellow and Yoshua Bengio and Aaron Courville, MIT Press, 2016

ReferenceBooks:

- 1. NeuralNetworks: ASystematicIntroduction, RaúlRojas, 1996
- 2. PatternRecognitionandMachineLearning,ChristopherBishop,2007
- 3. DeepLearningwithPython,FrançoisChollet,ManningPublications,2017

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS) (Applicable from the academic year 2025-26 and onwards)

III B. Tech I Semester	Computer	L	T	P	C
	Networks(V231316132)	3	0	0	3

CourseObjectives: The course is designed to

- Tounderstandthedifferenttypesofnetworks
- To develop an understanding, the principles of computer networks.
- To familiarize with Reference model OSI and TCP/IP
- To understand various layers of Reference models functions
- To explore network protocols

UNIT I: Introduction: Types of Computer Networks, Reference Models- The OSI Reference Model, The TCP/IP Reference Model, A Critique of the OSI Model and Protocols, A Critique of the TCP/IP Reference Model. History of Internet.

UNITII: The Data Link Layer: Transmission Media, Guided and Un-guided media, Data Link Layer Design Issues, Services Provided To the Network Layer, Error detecting and Error Correcting codes, Elementary Data Link Protocols, Sliding Window Protocols, HDLC, PPP. Multiple Access Protocols Wired Lans: Ethernet, Fast Ethernet, Gigabit Ethernet

UNITIII: TheNetworkLayer: Network Layer Design Issues, Routing Algorithms, Congestion, Congestion control algorithms. The Network Layer in the Internet, The IP Version 4 Protocol, IP Addresses- Classful, CIDR, NAT, IP Version 6 Protocol, Transition from IPV4 to IPV6

UNITIV: TheTransportLayer: The Transport Layer Services, Transport Layer Protocols: UDP, TCP and SCTP

UNITV: The Application Layer: The World Wide Web, HTTP, Domain Name Space, Remote Loging, Electronic Mail and File Transfer

Textbooks:

- 1. "Computer Networks", Andrew S Tanenbaum, David J Wetherall, 5th Edition, Pearson
- 2. "Data Communications and Networking", Behrouz A Forouzan, 4th Edition, Tata McGraw Hill Education

Reference Books:

1. "Data and Computer Communication", William Stallings, Pearson

(An Autonomous Institution)

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

III B. Tech I Semester	NATURAL LANGUAGE	L	T	P	C
III D. Tech I Semester	PROCESSING(V231316133)	3	0	0	3

Course Objectives: This course introduces the fundamental concepts and techniques of natural language processing (NLP).

- Students will gain an in-depth understanding of the computational properties of natural languages and the commonly used algorithms for processing linguistic information.
- The course examines NLP models and algorithms using both the traditional symbolic and the more recent statistical approaches.
- Enable students to be capable to describe the application based on natural language processing and to show the points of syntactic, semantic and pragmatic processing.

UNIT I:INTRODUCTION: Origins and challenges of NLP – Language Modelling: Grammar-based LM, Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance.

UNIT II:WORD LEVEL ANALYSIS: Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part- of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.

UNIT III: SYNTACTIC ANALYSIS: Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures

UNIT IV:SEMANTICS AND PRAGMATICS: Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.

UNIT V:DISCOURSE ANALYSIS AND LEXICAL RESOURCES: Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Coreference Resolution – Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC).

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS) (Applicable from the academic year 2025-26 and onwards)

Text Books:

- 1. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, 2ndEdition, Daniel Jurafsky, James H. Martin Pearson Publication, 2014.
- 2. Natural Language Processing with Python, First Edition, Steven Bird, Ewan Klein and Edward Loper, OReilly Media, 2009.

Reference Books:

- 1. Language Processing with Java and Ling Pipe Cookbook, 1stEdition, Breck Baldwin, Atlantic Publisher, 2015.
- 2. Natural Language Processing with Java, 2ndEdition, Richard M Reese, OReilly Media,2015.
- 3. Handbook of Natural Language Processing, Second, Nitin Indurkhya and Fred J. Damerau, Chapman and Hall/CRC Press, 2010.Edition
- 4. Natural Language Processing and Information Retrieval, 3rdEdition, Tanveer Siddiqui, U.S. Tiwary, Oxford University Press,2008.

(An Autonomous Institution)

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

III B. Tech I Semester	OBJECT ORIENTED ANALYSIS AND	L	T	P	C
III D. Tech I Semester	DESIGN(V23131C341)	3	0	0	3

Course Objectives: The main objective is for students to

- Become familiar with all phases of Object-Oriented Analysis and Design (OOAD).
- Master the main features of UML,
- Understand Object Technologies and their applications, develop problem-solving skills in various domains
- Learn Object Design Principles and their implementation.

UNIT-I:Introduction: The Structure of Complex Systems, The Inherent Complexity of Software, Attributes of Complex Systems, Organized and Disorganized Complexity, Bringing Order to Chaos, Designing Complex Systems.

Case Study: System Architecture - Satellite-Based Navigation.

UNIT-II:Introduction to UML: Importance of modelling, principles of modelling, object-oriented modelling, conceptual model of UML, Architecture, and Software Development Life Cycle. Basic Structural Modelling: Classes, Relationships, Common Mechanisms, and Diagrams.

Case Study: Control System - Traffic Management.

UNIT-III: Class & Object Diagrams: Terms, concepts, and modelling techniques for Class & Object Diagrams. Advanced Structural Modelling: Advanced Classes, Advanced Relationships, Interfaces, Types and Roles, Packages.

Case Study: AI - Cryptanalysis.

UNIT-IV:Basic BehaviouralModelling-I: Interactions, Interaction Diagrams, Use Cases, Use Case Diagrams, Activity Diagrams.

Case Study: Web Application - Vacation Tracking System.

UNIT -V:Advanced BehaviouralModelling: Events and Signals, State Machines, Processes and Threads, Time and Space, State Chart Diagrams. Architectural Modelling: Component, Deployment, Component Diagrams, and Deployment Diagrams.

Case Study: Weather Forecasting.

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS) (Applicable from the academic year 2025-26 and onwards)

Text Books:

- 1. Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim Conallen, Kellia Houston, "Object-Oriented Analysis and Design with Applications", 3rd edition, 2013, PEARSON.
- 2. Grady Booch, James Rumbaugh, Ivar Jacobson: "The Unified Modeling Language User Guide", Pearson Education.

Reference Books:

- 1. Meilir Page-Jones: "Fundamentals of Object-Oriented Design in UML", Pearson Education.
- 2. Pascal Roques: "Modeling Software Systems Using UML2", WILEY-Dreamtech India Pvt. Ltd.
- 3. Atul Kahate: "Object-Oriented Analysis & Design", The McGraw-Hill Companies. Applying UML and Patterns: "An Introduction to Object-Oriented Analysis and Design and Unified Process", Craig Larman, Pearson Education.

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

III Year I Semester	RENEWABLE ENERGY	L	T	P	С
	SOURCES(V231310251)_	3	0	0	3

Pre-requisite: Basic Electrical Engineering

Course Objectives:

- To study the solar radiation data, equivalent circuit of PV cell and its I-V & P-V characteristics.
- To understand the concept of Wind Energy Conversion & its applications.
- To study the principles of biomass, Hydel and geothermal energy.
- To understand the principles of ocean Thermal Energy Conversion, waves and power associated with it.
- To study the various chemical energy sources such as fuel cell and hydrogen energy along with their operation and equivalent circuit.

Course Outcomes:

After the completion of the course the student should be able to:

CO1: Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's surface and solar Energy Storage.

CO2: Illustrate the components of wind energy systems.

CO3: Illustrate the working of biomass, hydel plants and Geothermal plants.

CO4: Demonstrate the principle of Energy production from OTEC, Tidal and Waves.

CO5: Evaluate the concept and working of Fuel cells & MHD power generation.

UNIT-I

Solar Energy

Introduction - Renewable Sources - prospects, solar radiation at the Earth Surface - Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics - Solar Energy Collectors: Flat plate Collectors, concentrating collectors - Solar Energy storage systems and Applications: Solar Pond - Solar water heating - Solar Green house.

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS) (Applicable from the academic year 2025-26 and onwards)

UNIT-II

Wind Energy

Introduction - basic Principles of Wind Energy Conversion, the nature of Wind - the power in the wind - Wind Energy Conversion - Site selection considerations - basic components of Wind Energy Conversion Systems (WECS) - Classification - Applications.

UNIT-III

Biomass, Hydel and Geothermal Energy

Biomass: Introduction - Biomass conversion technologies- Photosynthesis. Factors affecting Bio digestion.

Hydro plants: Basic working principle – Classification of hydro systems: Large, small, micro hydel plants.

Geothermal Energy: Introduction, Geothermal Sources – Applications - operational and Environmental problems.

UNIT-IV

Energy From oceans, Waves & Tides:

Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) – methods - prospects of OTEC in India.

Waves: Introduction - Energy and Power from the waves - Wave Energy conversion devices.

Tides: Basic principle of Tide Energy -Components of Tidal Energy.

UNIT-V

Chemical Energy Sources:

Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell - types of Fuel Cells - Applications.

Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage and Applications

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS) (Applicable from the academic year 2025-26 and onwards)

Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation - Types.

Text Books:

- 1. G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.
- 2. John Twidell& Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013.

Reference Books:

- 1. S.P.Sukhatme&J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage, TMH, 2011.
- 2. John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts, Oxford, 2nd edition, 2013.
- 3. ShobaNath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015.

Online Learning Resources:

- 1. https://archive.nptel.ac.in/courses/103/103/103103206
- 2. https://archive.nptel.ac.in/courses/103/107/103107157

(An Autonomous Institution)

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

III B. Tech I Semester	DEEP LEARNING	L	T	P	C
	LAB(V231316161)	0	0	3	1.5

CourseOutcomes:Oncompletionofthiscourse, the student will be able to

- Implementdeepneuralnetworkstosolverealworldproblems
- Chooseappropriate pre-trained model to solve real time problem
- Interprettheresultsoftwodifferentdeeplearningmodels

SoftwarePackagesrequired:

- Keras
- Tensorflow
- PyTorch

ListofExperiments:

- 1. Implementmulti-layerperceptronalgorithmforMNISTHandwrittenDigit Classification.
- 2. Designaneuralnetworkforclassifyingmoviereviews(BinaryClassification) using IMDB dataset.
- 3. Design a neuralNetworkfor classifyingnews wires (Multiclassclassification) using Reuters dataset.
- 4. DesignaneuralnetworkforpredictinghousepricesusingBostonHousing Price dataset.
- 5. Build a Convolution Neural Network for MNISTHandwrittenDigit Classification.
- 6. BuildaConvolutionNeuralNetworkforsimpleimage(dogsandCats) Classification
- 7. Use a pre-trained convolution neural network (VGG16) for image classification.
- 8. Implementonehotencodingofwordsorcharacters.
- 9. ImplementwordembeddingsforIMDBdataset.
- 10. Implement a Recurrent Neural Network for IMDB Moviereview classification problem.

TextBooks:

1. RezaZadehandBharathRamsundar, "TensorflowforDeepLearning", O'Reilly publishers, 2018

References Books:

1. https://github.com/fchollet/deep-learning-with-python-notebooks

(An Autonomous Institution)

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

	NATURAL LANGUAGE	L	T	P	C
III B. Tech I Semester	PROCESSING LAB(V231316162)	0	0	3	1.5

CourseOutcomes: AttheendoftheCourse, theStudentwillbeableto:

CO 1: Use the NLTK and spacy toolkit for NLP Programming. (L3)

CO 2: Analyze various corpora for developing programs. (L4)

CO 3: Develop various pre-processing techniques for a given corpus. (L6)

CO4: Developprogramming logicusing NLTK functions. (L6)

CO 5: Build applications using various NLPtechniques for a given corpus. (L6)

List of Experiments:

- InstallationandexploringfeaturesofNLTKandspaCytools.DownloadWordCloudand few corpora.
- 2. (i) Writeaprogramtoimplementword Tokenizer, Sentence and Paragraph Tokenizers.
 - (ii)Checkhowmanywordsarethereinanycorpus.Alsocheckhowmanydistinctwords are there?
- 3. (i)Writeaprogramtoimplementbothuser-definedandpre-definedfunctionstogenerate
 - (a) Uni-grams
 - (b) Bi-grams
 - (c) Tri-grams
 - (d) N-grams
 - (ii)Writeaprogramto calculate thehighestprobabilityofaword(w2)occurringafteranother word(w1).
- 4. (i)Writeaprogram to identify theword collocations.
 - (ii) Writeaprogramtoprint allwordsbeginningwith agivensequenceof letters.
 - (iii) Writeaprogramtoprintallwordslongerthanfourcharacters.
- 5. (i)Writeaprogramtoidentify themathematical expression in a given sentence.
 - (ii) Write a program to identify different components of a nemail address.
- 6. (i) Writeaprogramtoidentify allantonymsandsynonymsofa word.
 - (ii) Writeaprogramtofindhyponymy, homonymy, polysemyforagivenword.
- 7. (i) Writeaprogram of findall the stop words in any given text.
 - (ii) Write a function that finds the 50 most frequently occurring words of a text that are not stop words.
- 8. Writeaprogramtoimplementvariousstemmingtechniquesandprepareachartwiththe performance of each method.

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS) (Applicable from the academic year 2025-26 and onwards)

- 9. Writeaprogramtoimplementvariouslemmatizationtechniquesandprepareachartwiththe performance of each method.
- 10. (i)WriteaprogramtoimplementConditionalFrequencyDistributions(CFD)forany corpus.
 - (ii) Findall the four-letter words in any corpus. With the help of afrequency distribution (FreqDist), show these words in decreasing order of frequency.
 - (iii) Defineaconditionalfrequencydistributionoverthenamescorpusthatallowsyouto see which initial letters are more frequent for males versus females.
- 11. (i)WriteaprogramtoimplementPart-of-Speech(PoS)taggingforany corpus.
 - (ii) Writeaprogramtoidentifywhichwordhasthegreatestnumberofdistincttags? What are they, and what do they represent?
 - (iii) Writeaprogramtolisttagsinorderofdecreasingfrequencyandwhatdothe20most frequent tags represent?
 - (iv) Writeaprogramtoidentifywhichtagsarenounsmostcommonlyfoundafter?What do these tags represent?
- 12. WriteaprogramtoimplementTF-IDFforanycorpus.
- 13. Writeaprogramtoimplementchunkingandchinkingforanycorpus.
- 14. (i)Writeaprogramtofind allthe misspelledwordsina paragraph.
 - (ii) Writea programtoprepare atable with frequency of misspelled tags for any given text.
- 15. WriteaprogramtoimplementalltheNLPPre-ProcessingTechniquesrequiredtoperform furtherNLP tasks.

Case Studies: (At Least any one Case Study has to be performed)

CaseStudy-1. Writeaprogram to implement Named Entity Recognition (NER) for any corpus.

CaseStudy-2. Writeaprogramto performAuto-Correctionofspellingsforany text.

Case Study-3. Check for all positive words in a news article/ any text.

REFERENCE BOOKS:

1.ToolkitStevenBirdEwanKlein,andEdwardLoper,"NaturalLanguageProcessingwithPytho n – Analyzing Text with the Natural Language".

WEB REFERENCES:

1. http://www.nptelvideos.in/2012/11/natural-languageprocessing.html

(An Autonomous Institution)

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

	FULL STACK DEVELOPMENT -	L	T	P	C
III B. Tech I Semester	2(V231316163)	0	1	2	2

List of Experiments:

Experiment 11: Node.js

- a. Write a program to show the workflow of JavaScript code executable by creating web server in Node.js.
- b. Write a program to transfer data over http protocolusing http module.
- c. Create a text file src.txt and add the following content to it. (HTML, CSS, Javascript, Typescript, MongoDB, Express.js, React.js, Node.js)
- d. Write a program to parse an URL using URL module.
- e. Write a program to create an user-defined module and show the workflow of Modularization of application using Node.js

Experiment 12: Typescript

- a. Write a program to understand simple and special types.
- b. Write a program to understand function parameter and return types.
- c. Write a program to show the importance with Arrow function. Use optional, default and REST parameters.
- d. Write a program to understand the working of typescript with class, constructor, properties, methods and access specifiers.
- e. Write a program to understand the working of namespaces and modules.
- f. Write a program to understand generics with variables, functions and constraints.

Experiment 13-15: Augmented Programs: (Any 2 must be completed)

- 13. Write a CSS program, to apply 2D and 3D transformations in a web page.
- 14. Design a web page with new features of HTML5 and CSS3.
- 15. Design a to-do list application using Javascript.

Experiment 1: ExpressJS – Routing, HTTP Methods, Middleware.

- a. Write a program to define a route, Handling Routes, Route Parameters, Query Parameters and URL building.
- b. Write a program to accept data, retrieve data and delete a specified resource using http methods.
- c. Write a program to show the working of middleware.

Experiment 2: ExpressJS – Templating, Form Data

a. Write a program using templating engine.

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

b. Write a program to work with form data.

Experiment 3: ExpressJS – Cookies, Sessions, Authentication

- a. Write a program for session management using cookies and sessions.
- b. Write a program for user authentication.

Experiment 4: ExpressJS – Database, RESTful APIs

- a. Write a program to connect MongoDB database using Mangoose and perform CRUD operations.
- b. Write a program to develop a single page application using RESTful APIs.

Experiment 5: ReactJS – Render HTML, JSX, Components – function & Class

- a. Write a program to render HTML to a web page.
- b. Write a program for writing markup with JSX.
- c. Write a program for creating and nesting components (function and class).

Experiment 6: ReactJS – Props and States, Styles, Respond to Events

- a. Write a program to work with props and states.
- b. Write a program to add styles (CSS & Sass Styling) and display data.
- c. Write a program for responding to events.

Experiment 7: ReactJS – Conditional Rendering, Rendering Lists, React Forms

- a. Write a program for conditional rendering.
- b. Write a program for rendering lists.
- c. Write a program for working with different form fields using react forms.

Experiment 8: ReactJS – React Router, Updating the Screen

- a. Write a program for routing to different pages using react router.
- b. Write a program for updating the screen.

Experiment 9: ReactJS – Hooks, Sharing data between Components

- a. Write a program to understand the importance of using hooks.
- b. Write a program for sharing data between components.

Experiment 10: ReactJS Applications – To-do list and Quiz

a. Design to-do list application.

Experiment 11: MongoDB – Installation, Configuration, CRUD operations

- f. Install MongoDB and configure ATLAS
- g. Write MongoDB queries to perform CRUD operations on document using insert(), find(), update(), remove()

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

Experiment 12: MongoDB – Databases, Collections and Records

- g. Write MongoDB queries to Create and drop databases and collections.
- h. Write MongoDB queries to work with records using find(), limit(), sort(), createIndex(), aggregate().

Experiment 13-15: Augmented Programs: (Any 2 must be completed)

- 13. Design a to-do list application using NodeJS and ExpressJS.
- 14. Design a Quiz app using ReactJS.
- 15. Complete the MongoDB certification from MongoDB University website.

Text Books:

- 1. Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013.
- 2. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2nd edition, APress, O'Reilly.

Reference Books

- 1. ExpressJS https://www.tutorialspoint.com/expressjs
- 2. ReactJS https://www.w3schools.com/REACT (and) https://react.dev/learn#
- 3. MongoDB https://learn.mongodb.com/learning-paths/introduction-to-mongodb

(An Autonomous Institution)

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

IIID Task I Camaratan	TINKERING LAB(V231316166)	L	T	P C 2 1		
III B. Tech I Semester	(UI DESIGN-FLUTTER)	0	0	2	1	

Course Objectives:

- Learns to Implement Flutter Widgets and Layouts
- Understands Responsive UI Design and with Navigation in Flutter
- Knowledge on Widges and customize widgets for specific UI elements, Themes
- Understand to include animation apart from fetching data

List of Experiments: Students need to implement the following experiments

- 1. a) Install Flutter and Dart SDK.
 - b) Write a simple Dart program to understand the language basics.
- 2. a) Explore various Flutter widgets (Text, Image, Container, etc.).
 - b) Implement different layout structures using Row, Column, and Stack widgets.
- 3. a) Design a responsive UI that adapts to different screen sizes.
 - b) Implement media queries and breakpoints for responsiveness.
- 4. a) Set up navigation between different screens using Navigator.
 - b) Implement navigation with named routes.
- 5. a) Learn about stateful and stateless widgets.
 - b) Implement state management using set State and Provider.
- 6. a) Create custom widgets for specific UI elements.
 - b) Apply styling using themes and custom styles.
- 7. a) Design a form with various input fields.
 - b) Implement form validation and error handling.
- 8. a) Add animations to UI elements using Flutter's animation framework.
 - b) Experiment with different types of animations (fade, slide, etc.).
- 9. a) Fetch data from a REST API.
 - b) Display the fetched data in a meaningful way in the UI.
- 10. a) Write unit tests for UI components.
 - b) Use Flutter's debugging tools to identify and fix issues.

Text Book:

- 1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development.
- 2. Rap Payne, Beginning App Development with Flutter: Create Cross-Platform Mobile Apps 1stEdition, Apres

B.Tech AI & ML (V23-IIIrd YEAR COURSE STRUCTURE & SYLLABUS)

(Applicable from the academic year 2025-26 and onwards)

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

B. Tech.- III Year II Semester

S. No.	Category	Title	L	T	P	С
1	Professional Core	Reinforcement Learning (V231326131)	3	0	0	3
2	Professional Core	Big Data Analytics (V231326132)	3	0	0	3
3	Professional Core	Data Visualization(V231326133)	3	0	0	3
4	Professional Elective-II	 Cryptography &Network Security(V231326141) Recommender Systems(V231326142) Software Engineering(V231326143) Social Network Analysis(V231326144) 12-WeekSWAYAM /NPTEL Course suggested By the BoS(V231326145) 	3	0	0	3
5	Professional Elective-III	 Computer Vision(V231326146) Cloud Computing(V231326147) Dev Ops(V231326148) Soft Computing(V231326149) 12-WeekSWAYAM /NPTEL Course suggested By the BoS(V23132614A) 	3	0	0	3
6	Open Elective-II	Database Management Systems (V231326151)	3	0	0	3
7	Professional Core	Big Data Analytics Lab(V231326161)	0	0	3	1.5
8	Professional Core	Data Visualization Lab(V231326162)	0	0	3	1.5
9	Skill Enhancement course	Soft skills(V231326163) SWAYAM Plus- 21st Century Employability Skills(V231326164)	0	1	2	2
10	Audit Course	Technical Paper Writing &IPR(V2313261C1)	2	0	0	-
		Total nternshipof08weeksdurationduringsu	20 mmery	1 racation	8	23
MC	Minor Course	om the same specialized minors pool)	3	0	3	4.5

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

MC	Minor Course (Student may select from the same specialized minors pool)	3	0	0	3
НС	Honors Course (Student may select from the same honors pool)	3	0	0	3

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

HC	HonorsCourse	3	0	0	3
	(Studentmayselectfromthehonors pool)				

^{*}Under IndustryInternship interestedstudentscanpursueSWAYAMPluscoursesviz.,Hands-on Masterclass on Data Analytics OR Artificial Intelligence for Real-World Application

Note: StudentneedtodoatleastONEMOOC Course(3creditsoutof160credits) tomeet the mandatory requirement (11th criteria, as per R23 Regulations)

Open Electives, offered to other department students:

OpenElectiveI:OperatingSystems/ComputerOrganizationandArchitecture Open

Elective II: Database Management Systems

OpenElectiveIII:ObjectOrientedProgrammingThroughJava

OpenElectiveIV:ComputerNetworks/SoftwareEngineering/IOTBasedSmart Systems

Minor Engineering

Note:

- 1. ToobtainMinorEngineering,studentneedstoobtain18creditsbysuccessfully completing any of the following courses in the concern stream.
- 2. DuringMinor/HonorsCourseselection,thereshouldnotbeanyoverlappingwith Regular/Major/OPEN Electives

MinorinAI&ML

1.	DatabaseManagementSystems	3-0-3-4.5(II-II)
2.	OperatingSystems	3-0-0-3(III-I)
3.	DataVisualization	3-0-3-4.5(III-II)
4.	GenerativeAI	3-0-0-3(IV-I)

Anyofthefollowing12 Week3 creditNPTELMOOCCourses

- 5. ArtificialIntelligence:KnowledgeRepresentationandReasoning
- 6. MachineLearningandDeepLearning-FundamentalsandApplications
- 7. FundamentalsofObjectOrientedProgramming
- 8. DiscreteMathematicsforCS
- 9. ComputerNetworksandInternetProtocol
- 10. SoftwareEngineering
- 11. NaturalLanguageProcessing
- 12. BusinessIntelligence&Analytics

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

SuggestedMOOCCoursesforHonorsDegreein AI&ML

Note: To obtain Honor's degree, student needs to obtain 18 credits by successfully completing any of the following courses in the concernstream (without duplication).

MandatoryCourse(s)

- 1. AppliedLinearAlgebra inAI&ML 12Week3CreditCourse, MOOCS
- 2. DeepLearningforNaturalLanguageProcessing- 12Week3CreditCourse, MOOCS

Anyofthefollowingforremaining12 Credits

3.	HighPerformanceScientificComputing	12Week3CreditCourse, MOOCS
4.	ComputerVision	12Week3CreditCourse, MOOCS
5.	AppliedTime-SeriesAnalysis	12Week3CreditCourse, MOOCS
6.	ReinforcementLearning	12Week3CreditCourse, MOOCS
7.	GPUArchitectureandProgramming	12Week3CreditCourse, MOOCS
8.	ComputationalComplexity	12Week3CreditCourse, MOOCS
9.	QuantumAlgorithmsandCryptography	12Week3CreditCourse, MOOCS
10.	PracticalHigh-PerformanceComputing	12Week3CreditCourse, MOOCS
11.	CryptographyandNetworkSecurity	12Week3CreditCourse, MOOCS

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

IIIB.TechII Semester	REINFORCEMENT LEARNING	L	Т	P	C
IIID. Techni Semester	(V231326131)	3	0	0	3

CourseObjective:

• ToprovidethefundamentalsofReinforcementlearning.

CourseOutcomes:

- EnumeratetheelementsofReinforcementLearning
- Solvethen-armedBanditproblem
- ComparedifferentFiniteMarkovDecisionProcess
- DiscussaboutMonteCarloMethodsinsolvingrealworldproblems
- ListtheApplicationsandCaseStudiesofReinforcementLearning

UNIT-I: The Reinforcement Learning Problem: Reinforcement Learning, Examples, Elements of Reinforcement Learning, Limitations and Scope, An Extended Example: Tic-Tac-Toe, Summary, History of Reinforcement Learning.

UNIT-II: Multi-arm Bandits: An n-Armed Bandit Problem, Action-Value Methods, Incremental Implementation, tracking a Nonstationary Problem, Optimistic Initial Values, Upper-Confidence-Bound Action Selection, Gradient Bandits, Associative Search (Contextual Bandits)

UNIT-III:FiniteMarkovDecisionProcesses: The Agent—Environment Interface, Goals and Rewards, Returns, UnifiedNotationforEpisodicandContinuingTasks, The Markov Property, Markov Decision Processes, ValueFunctions, OptimalValueFunctions, Optimality and Approximation.

UNIT-IV: Monte Carlo Methods: Monte Carlo Prediction, Monte Carlo Estimation of Action Values, Monte Carlo Control, Monte Carlo Control without Exploring Starts, Off-policyPredictionviaImportanceSampling,Incremental Implementation,Off-Policy MonteCarlo Control, Importance Sampling on Truncated Returns

UNIT-V: Applications and Case Studies:TD-Gammon, Samuel's Checkers Player, The Acrobot, Elevator Dispatching, Dynamic Channel Allocation, Job-Shop Scheduling.

Text Books:

- 1. Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning-AnIntroduction", 2ndEdition, The MIT Press, 2018
- 2. Marco Wiering, Martijn van Otterlo Reinforcement Learning: State-of-the-Art(Adaptation, Learning, and Optimization (12)) 2012th Edition

ReferenceBooks:

1. VincentFrançois-Lavet,PeterHenderson,RiashatIslam,AnIntroductiontoDeepReinforcement Learning (Foundations and Trends(r) in Machine Learning), 2019.

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

IIIB.TechII Semester	BIGDATAANALYTICS	L	T	P	C
IIIB. Techti Semester	(V231326132)	3	0	0	3

COURSEOBJECTIVES:

- OptimizebusinessdecisionsandcreatecompetitiveadvantagewithBigData analytics
- IntroducingJavaconceptsrequired fordevelopingmapreduceprograms
- Derivebusinessbenefitfromunstructureddata
- Imparting the architectural concepts of Hadoop and introducing map reduce paradigm
- TointroduceprogrammingtoolsPIG&HIVE inHadoopechosystem.

UNIT-I: Data structures in Java: Linked List, Stacks, Queues, Sets, Maps; Generics: Generic classes and Type parameters, Implementing Generic Types, Generic Methods, Wrapper Classes, Concept of Serialization

UNIT-II: Working with Big Data:Google File System, Hadoop Distributed File System (HDFS) BuildingblocksofHadoop (Namenode, Datanode,SecondaryNamenode,Job Tracker, Task Tracker), Introducing and Configuring Hadoop cluster (Local, Pseudo- distributed mode, Fully Distributed mode), Configuring XML files.

UNIT-III: Writing Map ReducePrograms: AWeatherDataset, Understanding HadoopAPIforMap Reduce Framework (Old and New), Basic programs ofHadoop Map Reduce: Driver code, Mapper code, Reducer code, Record Reader, Combiner, Practitioner

UNIT-IV: StreamMemory and Spark: Introduction to Streams Concepts— Stream Data ModelandArchitecture,Streamcomputing,SamplingDatainaStream,FilteringStreams ,Counting DistinctElements in a Stream , Introduction to Spark Concept ,Spark Architectureandcomponents , Spark installation , Spark RDD(Resilient Distributed Dataset) — Spark RDD operations.

UNIT-V:Pig:HadoopProgrammingMadeEasierAdmiringthePig Architecture,Goingwith the Pig Latin Application Flow, Working through the ABCs of Pig Latin, Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out the Pig Script Interfaces, Scripting with Pig Latin.

Applying Structure to Hadoop Data with Hive: Saying Hello to Hive, Seeing How the Hive is Put Together, Getting Started with Apache Hive, Examining the Hive Clients, Working with Hive Data Types, Creating and Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and Analysing data

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

TEXTBOOKS:

- 1. Wiley&Big Java4thEdition,CayHorstmann,WileyJohnSons,INC
- 2. Hadoop:TheDefinitiveGuidebyTomWhite,3rd·Edition,O'reilly

REFERENCEBOOKS:

- 1. HadoopinAction byChuckLam,MANNINGPubl.
- 2. Hadoop for Dummies by Dirk deRoos, Paul C.Zikopoulos, Roman B.Melnyk,Bruce Brown, Rafael Coss
- 3. HadoopinPracticebyAlexHolmes,MANNING Publ.
- 4. BigDataAnalytics byDr. A.KrishnaMohanandDr.E.LaxmiLydia
- 5. HadoopMapReduceCookbook,SrinathPerera,ThilinaGunarathne

SoftwareLinks:

- 1. Hadoop:http://hadoop.apache.org/
- 2. Hive:https://cwiki.apache.org/confluence/display/Hive/Home
- 3. Piglatin:http://pig.apache.org/docs/r0.7.0/tutorial.html

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

IIIB.TechII Semester	DATAVISUALIZATION	L	T	P	C
	(V231326133)	3	0	0	3

Pre-Requisites: Computer Graphics, Image Processing Course Objective:

- familiarizestudentswiththebasicandadvancedtechniquesofinformation visualizationand scientific visualization
- learnkeytechniques ofthevisualization process
- a detailed view of visual perception, the visualized data and the actual visualization, interaction and distorting techniques

UNIT-1:Introduction: What Is Visualization?, History of Visualization, Relationship between Visualization and Other Fields The Visualization Process, Introduction of visual perception, visual representation of data, Gestalt principles, information overloads.

UNIT-II: Creating visual representations, visualization reference model, visual mapping, visual analytics, Design of visualization applications

UNIT-III: Classification of visualization systems, Interaction and visualization techniques misleading, Visualization of one, two and multi-dimensional data, text and text documents.

UNIT-IV: Visualization of groups, trees, graphs, clusters, networks, software, Metaphorical visualization

UNIT-V: Visualization of volumetric data, vector fields, processes and simulations, Visualization of maps, geographic information, GIS systems, collaborative visualizations, Evaluating visualizations

Recent trends in various perception techniques, various visualization techniques, data structures used in data visualization.

TEXTBOOK:

- 1. WARD, GRINSTEIN, KEIM.Interactive Data Visualization: Foundations, Techniques, and Applications. Natick: A K Peters, Ltd.
- 2. E.Tufte, The Visual Display of Quantitative Information, Graphics Press.

Resources:

1. https://kdd.cs.ksu.edu/Courses/CIS536/Lectures/Slides/Lecture-34-Main_6up.pdf

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

IIIB.TechII Semester	CRYPTOGRAPHY&NETWORK	L	T	P	C
Hib. Techni Semester	SECURITY(V231326141)	3	0	0	3

COURSE OBJECTIVES:

- Explaintheobjectivesofinformationsecurity
- Explaintheimportanceandapplicationofeachofconfidentiality, integrity, authentication and availability
- Understandthebasiccategoriesofthreatsto computersand networks
- DiscussestheMathematicsofCryptography
- $\bullet \quad Discuss the fundamental ideas of Symmetric and Asymmetric Cryptographic Algorithms$
- DiscussestheNetworklayer,TransportLayerandApplicationLayerProtocols Enhanced security mechanisms

UNIT – **I: Security Concepts:** Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security Cryptography. Classical Encryption Techniques-symmetric cipher model, Substitution techniques, Transposition techniques, Rotor Machines, Stegnography.

UNIT – II: Introduction to Symmetric Cryptography: Algebraic Structures-Groups, Rings, Fields, $GF(2^n)$ fields, Polynomials. Mathematics of Asymmetric cryptography: Primes, Checking For Primness, Eulers phi-functions, Fermat's Little Theorem, Euler's Theorem, Generating Primes, Primality Testing, Factorization, Chinese Remainder Theorem, Quadratic Congruence, Exponentiation And Logarithm.

UNIT – III: Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish,IDEA, Block cipher operation, Stream ciphers: RC4, RC5

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Diffie-Hellman Key Exchange, Elgamal Cryptographic system, Elliptic Curve Arithmetic, Elliptic Curve Cryptography.

UNIT – **IV: Cryptographic Hash Functions:** Applications of Cryptographic Hash Functions, Two Simple Hash Functions, Requirements and Security, Hash Functions Based on Cipher Block Chaining, Secure Hash Algorithms (SHA)

Message Authentication Codes: Message Authentication Requirements, Message Authentication Functions, Requirements for Message Authentication Codes, Security of MAC'S,MAC'S Based OnHash Functions: HMAC, MAC'S Based On Block Ciphers: DAA And CMAC

Digital Signatures: Digital Signatures, Elgamal Digital Signature Scheme, Elliptic Curve Digital Signature Algorithm, RSA-PSS Digital Signature Algorithm.

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

UNIT–V:NetworkandInternetSecurity:Transport-LevelSecurity: WebSecurity Considerations, Transport Level Security, HTTPS, SSH.

IPSecurity:IPSecurityOverview,IPSecurityPolicy,EncapsulatingSecurityPayload, Authentication Header Protocol.

Electronic-MailSecurity: Internet-mailSecurity, EmailFormat, EmailThreatsandComprehensive Email Security, S/MIME, PGP.

TEXTBOOKS:

- 1. CryptographyandNetworkSecurity-PrinciplesandPractice:WilliamStallings, Pearson Education, 7th Edition, 2017
- 2. Cryptographyand Network Security: Behrouz A. Forouzan Debdeep, Mc Graw Hill, 3rd Edition, 2015

REFERENCEBOOKS:

1. Cryptographyand NetworkSecurity: AtulKahate, Mc Graw Hill, 3rd Edition IntroductiontoCryptographywithCodingTheory: WadeTrappe,LawrenceC.

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

IIIB.TechII Semester	RECOMMENDERSYSTEMS	L	T	P	C
IIIB. 1 echii Semester	(V231326142)	3	0	0	3

Course Objectives:

• Thiscoursecoversthebasicconceptsofrecommendersystems, including personalization algorithms, evaluation tools, and user experiences

UNIT-I:Introduction:Recommender system functions, Linear Algebra notation: Matrix addition, Multiplication, transposition, and inverses, covariance matrices, Understanding ratings, Applications of recommendation systems, Issues with recommender system.

UNIT-II:Collaborative Filtering:User-based nearest neighbour recommendation, Item-based nearest neighbour recommendation, Model based and pre-processing basedapproaches, Attacks on collaborative recommender systems.

UNIT-III:Content-based recommendation: High level architecture of content-based systems, Advantages and drawbacks of content based filtering, Item profiles, discovering features ofdocuments, obtaining itemfeatures fromtags, representing itemprofiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms.

Knowledge based recommendation: Knowledge representation and reasoning, Constraint based recommenders, Case based recommenders.

UNIT-IV:Hybrid approaches:Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies.

UNIT-V:Evaluating RecommenderSystem:Introduction, Generalpropertiesofevaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centred metrics.

Recommender Systems and communities:Communities, collaboration and recommender systems in personalized web search, Social tagging recommender systems, Trust and recommendations

TextBooks:

- 1. Jannach D., Zanker M.and FelFering A., Recommender Systems: An Introduction, Cambridge University Press(2011), 1sted.
- 2. Ricci F., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer(2011), 1sted.

ReferencesBooks:

1. Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer (2013), 1st ed.

(An Autonomous Institution)

B.TechAI&ML(R23)COURSESTRUCTURE&SYLLABUS

(Applicable from the academic year 2025-26 and onwards)

IIIB.TechII Semester	SOFTWAREENGINEERING	L	T	P	C
	SOFTWAREENGINEERING	3	0	0	3
	(V231326143)				

CourseObjectives:Theobjectivesofthiscoursearetointroduce

- Softwarelifecyclemodels, Softwarerequirements and SRS document.
- ProjectPlanning,qualitycontrolandensuringgoodqualitysoftware.
- Software Testingstrategies, useof CASE tools, Implementation issues, validation &verification procedures.

UNITI:Introduction: Evolution, Software development projects, Exploratory style of software developments, Emergence of software engineering, Notable changes in software development practices, Computer system engineering.

Software Life Cycle Models: Basic concepts, Waterfall model and its extensions, Rapid application development, Agile development model, Spiral model.

UNITH:Software **Project Management:**Software project managementcomplexities, Responsibilities of a software project manager, Metrics for project size estimation, Project estimation techniques, Empirical Estimation techniques, COCOMO, Halstead's software science, risk management.

Requirements Analysis and Specification: Requirements gathering and analysis, Software Requirements Specification (SRS), Formal system specification, Axiomatic specification, Algebraic specification, Executable specification and 4GL.

UNITIII:Software Design:Overview of the design process, How to characterize a good software design? Layered arrangement of modules, Cohesion and Coupling. approaches to software design.

Agility: Agility and the Cost of Change, Agile Process, Extreme Programming (XP), Other Agile Process Models, Tool Set for the Agile Process (Text Book 2)

Function-Oriented Software Design: Overview of SA/SD methodology, Structured analysis, Developing the DFD model of a system, Structured design, Detailed design, and Design Review.

User Interface Design: Characteristics of a good user interface, Basic concepts, Types of user interfaces, Fundamentals of component-based GUI development, and user interface design methodology.

UNITIV:Coding and Testing: Coding, Code review, Software documentation, Testing, Black-boxtesting, White-Boxtesting, Debugging, Programanalysistools, Integrationtesting, Testing object-oriented programs, Smoke testing, and Some general issues associated with testing.

Software Reliability and Quality Management: Software reliability. Statistical testing, Software quality, Software qualitymanagementsystem, ISO 9000. SEIC apability maturity

HEHRU TECHNOLOGICA

JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

model. Few other important quality standards and Six Sigma.

UNITV:Computer-Aided Software Engineering (Case): CASE and its scope, CASE environment, CASE support in the software life cycle, other characteristics of CASE tools, Towards second generation CASE Tool, and Architecture of a CASE Environment.

Software Maintenance: Characteristics of software maintenance, Softwarereverse engineering, Software maintenance process models and Estimation of maintenance cost.

SoftwareReuse:reuse-definition,introduction,reasonbehindnoreusesofar, anyreuse program, A reuse approach, and Reuse at organization level.

TextBooks:

- 1. FundamentalsofSoftwareEngineering,RajibMall,5thEdition,PHI.
- 2. SoftwareEngineering A Practitioner's Approach, Roger S. Pressman, 9thEdition, McGraw Hill International Edition.

ReferenceBooks:

- 1. SoftwareEngineering,IanSommerville,10thEdition,Pearson.
- 2. SoftwareEngineering,PrinciplesandPractices,DeepakJain,OxfordUniversityPress.

e-Resources:

- 1) https://nptel.ac.in/courses/106/105/106105182/
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01260589
 506387148827_shared/overview
- 3) https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 01338269 0411003904735 https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 01338269 <a href="https://infyspringboard.onwingspan.com/web/en/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/toc/lex/app/to

IIIB.Tech II Semester	SOCIALNETWORKANALYSIS	L	T	P	C
IIIB. I ech II Semester	(V231326144)	3	0	0	3

Unit-I: INTRODUCTION:Introduction to Semantic Web: Limitations of current Web – Development of Semantic Web – Emergence of the Social Web – Social Network analysis: Development of Social Network Analysis – Keyconcepts and measures in network analysis – Electronic sources for network analysis: Electronic discussion networks, Blogs and online communities – Web-based networks – Applications of Social Network Analysis

Unit-II:MODELLING,AGGREGATINGANDKNOWLEDGEREPRESENTATION

Ontology and their role in the Semantic Web: Ontology-based knowledge Representation – Ontology languages for the Semantic Web: Resource Description Framework – Web Ontology Language – Modelling and aggregating social network data: State-of-the-art in network data representation – Ontological representation of social individuals – Ontological representation of social relationships – Aggregating and reasoning with social network data – Advanced representations.

Unit-III: EXTRACTION AND MINING COMMUNITIES IN WEB SOCIAL NETWORKS Extracting evolution of Web Community from a Series of Web Archive – Detecting communities in social networks – Definition of community – Evaluating communities – Methods for community detection and mining – Applications of community mining algorithms – Tools for detecting communities social network infrastructures and communities – Decentralized online social networks – Multi-Relational characterization of dynamic social network communities.

Unit-IV:PREDICTINGHUMANBEHAVIORANDPRIVACYISSUESUnderstanding

and predicting human behavior for social communities – User data management – Inference andDistribution–Enabling new humanexperiences –Realitymining – Context –Awareness – Privacy in online social networks – Trust in online environment – Trust models based on subjective logic – Trust network analysis – Trust transitivity analysis – Combining trust and reputation – Trust derivation based on trust comparisons – Attack spectrum and counter measures.

Unit-V:VISUALIZATIONANDAPPLICATIONSOFSOCIALNETWORKSGraph

theory — Centrality — Clustering — Node-Edge Diagrams — Matrix representation — Visualizing online social networks, visualizing social networks with matrix-based representations — Matrix and Node-Link Diagrams — Hybrid representations — Applications — Cover networks — Community welfare — Collaboration networks — Co-Citation networks.

HEHRU TECHNOLOGIC

${\bf JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA}$

KAKINADA-533003,AndhraPradesh,India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS) TEXT BOOKS:

- 1. PeterMika,—SocialNetworksandtheSemantic Web,FirstEdition,Springer 2007.
- 2. Borko Furht, —Handbook of Social Network Technologies and Applications, 1st Edition, Springer, 2010.

REFERENCES:

- 1. Guandong Xu ,Yanchun Zhang and Lin Li,-Web Mining and Social Networking Techniques and applications, First Edition, Springer, 2011.
- 2. Dion Goh and Schubert Foo,-Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively, IGI Global Snippet, 2008.
- 3. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modelling, IGI Global Snippet, 2009.
- 4. John G. Breslin, Alexander Passant and Stefan Decker, -The Social Semantic Web, Springer, 2009.

IIIB.TechIISemester	COMPUTER VISION	L	T	P	C
111b. 1 ecil 15emester	COMPUTER VISION	3	0	0	3
	(V231326146)				

CourseObjectives:

- TounderstandtheFundamentalConceptsrelatedtosources,shadowsandshading
- TounderstandtheGeometryofMultipleViews

UNIT-I: CAMERAS: Pinhole Cameras Radiometry - Measuring Light: Lightin Space,

LightSurfaces,ImportantSpecialCasesSources,Shadows,AndShading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models Color: The Physics of Representing Human Perception, Color Color, Model ImageColor,SurfaceColorfromImageColor.

UNIT-II:Linear Filters:Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates, **Edge Detection:**Noise, Estimating Derivatives, Detecting Edges Texture0:Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape fromTexture.

UNIT-III:The Geometry of Multiple Views: Two Views Stereopsis: Reconstruction, Human Stereopsis, Binocular Fusion, Using More Cameras Segmentation by Clustering: WhatIsSegmentation?HumanVision:GroupingandGetstalt,Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,

UNIT-IV:Segmentation by Fitting aModel: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice, Tracking With Linear Dynamic Models:TrackingasanAbstractInferenceProblem, LinearDynamicModels, KalmanFiltering, D ataAssociation, Applications and Examples

UNIT-V:GeometricCameraModels:ElementsofAnalyticalEuclideanGeometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection EquationsGeometricCameraCalibration:Least-SquaresParameterEstimation, ALinearApproachtoCameraCalibration,TakingRadialDistortioninto Account, Analytical Photogrammetry,

Case study:Mobile Robot Localization Model- Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Case study: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.

THE HRU TECHNOLOGIC

${\bf JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA}$

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

TextBooks:

1. David A.ForsythandJeanPonce:ComputerVision—AModernApproach, PHI Learning (Indian Edition), 2009.

ReferenceBooks:

- 1. E. R. Davies: Computer and Machine Vision Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.
- 2. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008. 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011.

JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA KAKINADA– 533003,AndhraPradesh,India B.TechAl&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

IIID Tallii Carrantan	CLOUD COMPUTING	L	T	P	C
IIIB.TechII Semester	(V231326147)	3	$ \mathbf{T} \mathbf{P} \mathbf{C}$		

Course Objectives:

- Toexplaintheevolvingutilitycomputingmodelcalledcloud computing.
- Tointroducethevariouslevelsofservicesoffered bycloud.
- Todiscussthefundamentalsofcloudenablingtechnologiessuchasdistributed computing, service-oriented architecture and virtualization.
- Toemphasizethesecurityandotherchallengesincloudcomputing.
- Tointroducetheadvancedconceptssuchascontainers, serverlesscomputingandcloud-centric Internet of Things.

UNIT -I: **Introduction to Cloud Computing Fundamentals:**Cloud computing at a glance, defining a cloud, cloud computing reference model, types of services (IaaS, PaaS, SaaS), cloud deployment models (public, private, hybrid), utility computing, cloud computing characteristics and benefits, cloud service providers (Amazon Web Services, MicrosoftAzure, Google AppEngine).

UNIT-II: Cloud Enabling Technologies:Ubiquitous Internet, parallel and distributed computing, elements of parallel computing, hardware architectures for parallel computing (SISD, SIMD, MISD, MIMD), elements of distributed computing, Inter-process communication, technologies for distributed computing, remote procedure calls (RPC), service-orientedarchitecture (SOA), Web services, virtualization.

UNIT-III: Virtualization and Containers: Characteristics of virtualized environments, taxonomy of virtualization techniques, virtualization and cloud Computing, pros and cons of virtualization, technologyexamples (XEN, VMware), building blocks of containers, container platforms (LXC, Docker), container or chestration, Docker Swarm and Kubernetes, public cloud VM (e.g. Amazon EC2) and container (e.g. Amazon Elastic Container Service) offerings.

UNIT-IV: Cloud computing challenges:Economics of the cloud, cloud interoperability and standards, scalability and fault tolerance, energy efficiency in clouds, federated clouds, cloud computing security, fundamentals of computer security, cloud security architecture, cloud shared responsibility model, security in cloud deployment models.

UNIT -V: Advanced concepts in cloud computing: Serverless computing, Function-as-a-Service, serverless computing architecture, public cloud(e.g. AWSLambda) and open-source (e.g. OpenFaaS) serverless platforms, Internet of Things (IoT), applications, cloud-centric IoT and layers, edge and fog computing, DevOps, infrastructure-as-code, quantum cloud computing.

HEHRU TECHNOLOGICAL TO THE TEC

JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

TextBooks:

- 1. MasteringCloudComputing,2ndedition,RajkumarBuyya,ChristianVecchiola, Thamarai Selvi, Shivananda Poojara, Satish N. Srirama, Mc Graw Hill, 2024.
- 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.

ReferenceBooks:

- 1. Cloud Computing, Theory and Practice, Dan C Marinescu, 2nd edition, MK Elsevier, 2018.
- 2. EssentialsofcloudComputing, K. Chandrasekhran, CRC press, 2014.
- 3. Online documentation and tutorials from cloud service providers (e.g., AWS, Azure, GCP)

JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA KAKINADA-533003, Andhra Pradesh, India

IIIB.TechII Semester	DevOps(V231326148)	L	T	P	C
		3	0	0	3

CourseObjectives: Themainobjectivesofthis course are to:

- 1. DescribetheagilerelationshipbetweendevelopmentandIToperations.
- 2. Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability.
- 3. ImplementautomatedsystemupdateandDevOpslifecycle.

UNIT-II Introduction to DevOps:Introduction to SDLC, Agile Model. Introduction to DevOps. DevOps Features, DevOps Architecture, DevOps Lifecycle, Understanding Workflow and principles, Introduction to DevOps tools, Build Automation, Delivery Automation, Understanding Code Quality, Automation of CI/ CD.Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples

UNIT-II

SourceCodeManagement(GIT): Theneedforsourcecodecontrol, Thehistory of source code management, Roles and code, source code management system and migrations. What is Version Control and GIT, GIT Installation, GIT features, GIT workflow, working with remote repository, **GIT** commands, **GIT** branching, GITstagingandcollaboration. UNITTESTING-CODECOVERAGE: Junit, nUnit & Code Coverage with Sonar Qube, Sonar Qube - Code Quality Analysis.

UNIT-III: Build Automation - Continuous Integration (CI): Build Automation, What isCI Why Cl is Required, CI tools, Introduction to Jenkins (With Architecture), jenkins workflow, jenkins master slave architecture, JenkinsPipelines, PIPELINE BASICS -Jenkins Master, Node, Agent, and Executor FreestyleProjects& Pipelines, Jenkins for Continuous Integration, Create and Manage Builds, User Management in Jenkins Schedule Builds, Launch Builds on Slave Nodes.

UNIT-IV:Continuous Delivery:Importance of Continuous Delivery, CONTINUOUS DEPLOYMENT CD Flow, Containerization with Docker: Introduction to Docker, Dockerinstallation, Dockercommands, Images & Containers, Docker File, running containers, wo rkingwithcontainersandpublishtoDockerHub.

TestingTools:IntroductiontoSeleniumanditsfeatures,JavaScripttesting.

UNIT-V: ConfigurationManagement-ANSIBLE:IntroductiontoAnsible,Ansibletasks Roles, Jinja 2 templating, Vaults, Deployments using Ansible. CONTAINERIZATION USING **KUBERNETES**(**OPENSHIFT**):IntroductiontoKubernetes

Namespace&Resources,CI/CD-

OnOCP,BC,DC&ConfigMaps,DeployingAppsonOpenshift

ContainerPods.IntroductiontoPuppet masterand Chef.

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

ListofExperiments:

- 1. Writecodeforasimpleuserregistrationformforanevent.
- 2. ExploreGitandGitHubcommands.
- 3. PracticeSourcecodemanagementonGitHub. Experimentwiththe source code written in exercise 1.
- 4. Jenkinsinstallationandsetup, explore the environment.
- 5. DemonstratecontinuousintegrationanddevelopmentusingJenkins.
- 6. ExploreDockercommandsforcontentmanagement.
- 7. DevelopasimplecontainerizedapplicationusingDocker.
- 8. IntegrateKubernetesandDocker
- 9. Automate the process of running containerized application developed inexercise 7 using Kubernetes.
- 10. InstallandExploreSeleniumforautomatedtesting.
- 11. WriteasimpleprograminJavaScriptandperformtestingusingSelenium.
- 12. Developtestcasesfortheabovecontainerizedapplicationsingselenium.

TextBooks

- 1. Joyner, Joseph., Dev Opsfor Beginners: Dev Ops Software Development Method Guide for Software Developers and It Professionals, 1st Edition Mihails Konoplows, 2015.
- 2. Alisson Machado de Menezes., Hands-on DevOps with Linux,1st Edition, BPB Publications, India, 2021.

ReferenceBooks

- 1. LenBass,IngoWeber,LimingZhu.DevOps:ASoftwareArchitect's Perspective. Addison Wesley; ISBN-10
- 2. GeneKim JeHumble,PatrickDebois,John Willis.TheDevOpsHandbook, 1st Edition, IT Revolution Press, 2016.
- 3. Verona, Joakim Practical Dev Ops, 1st Edition, Packt Publishing, 2016.
- 4. JoakimVerona.PracticalDevops,SecondEdition.Ingramshorttitle;2ndedition (2018).ISBN10:1788392574
- 5. Deepak Gaikwad, Viral Thakkar. DevOps Tools fromPractitioner's

Viewpoint. Wileypublications. ISBN: 9788126579952

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

IIIB.TechII Semester	SOFT COMPUTING	L	T	P	C
	(V231326149)	3	0	0	3

CourseObjectives:

• TointroducetheconceptsinSoftComputingsuchasArtificialNeuralNetworks, Fuzzy logic-based systems, genetic algorithm-based systems and their hybrids.

UNIT-I:Introduction to Soft Computing, Artificial neural networks, biological neurons, Basic models of artificial neural networks, Connections, Learning, Activation Functions, McCulloch and Pitts Neuron, Hebb network.

UNIT-II: Perceptron networks, Learning rule, Training and testing algorithm, Adaptive Linear Neuron, Back propagation Network, Architecture, Training algorithm

UNIT-III: Fuzzy logic, fuzzy sets, properties, operations on fuzzy sets, fuzzy relations, operations on fuzzy relations, Fuzzy membership functions, fuzzification, Methods of membership, value assignments, intuition, inference, rank ordering, Lambda –Cuts forfuzzy sets, Defuzzification methods

UNIT-IV:Truthvaluesand Tables in FuzzyLogic, Fuzzypropositions, Formationoffuzzy rules, Decomposition of rules, Aggregation of rules, Fuzzy Inference Systems, Mamdani and Sugeno types, Neuro-fuzzy hybrid systems, characteristics, classification

UNIT-V:Introduction to genetic algorithm, operators in genetic algorithm, coding, selection,crossover,mutation,Stoppingconditionforgeneticalgorithmflow, Genetic-neuro hybrid systems, GeneticFuzzy rule based system

TextBooks:

- 1. S.N.SivanandamandS.N.Deepa,Principlesof softcomputing—JohnWiley&Sons,2007.
- 2. Timothy J.Ross, Fuzzy Logicwithengineering applications, John Wiley & Sons, 2016.

THE HEUTECHNOLOGICAL STATE OF THE STATE OF T

JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

ReferenceBooks:

- 1. N.K. Sinha and M.M. Gupta, Soft Computing &Intelligent Systems: Theory & Applications-Academic Press /Elsevier. 2009.
- 2. Simon Haykin, NeuralNetwork-A Comprehensive Foundation-Prentice Hall International, Inc.1998
- 3. R.Eberhart and Y. Shi, ComputationalIntelligence: Conceptsto Implementation, Morgan Kaufman/Elsevier, 2007.
- 3. DriankovD.,HellendoornH.andReinfrankM.,AnIntroductiontoFuzzy Control Narosa Pub., 2001.
- 4. BartKosko, Neural Network and Fuzzy Systems-Prentice Hall,Inc.,Englewood Cliffs, 1992
- 5. Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning Addison Wesley, 1989

KAKINADA-533003, Andhra Pradesh, India

B.TechAl&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

THE TOTAL PROPERTY OF THE PROP	BIGDATA ANALYTICS LAB	L	Ť	P	C
	(V231326161)	0	0	3	1.5

SoftwareRequirements:

1. **Hadoop** :https://hadoop.apache.org/release/2.7.6.html

2. **Java** : https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html

3. **Eclipse:**https://www.eclipse.org/downloads/

List of Experiments:

Experiment1: Week1,2:

1. Implement the followingDatastructures in Java a)Linked Listsb)Stacksc)Queuesd)Set e)Map

Experiment2:Week3:

 $2. \ \ (i) Performs etting up and Installing Hado opinits three operating modes:$

Standalone, Pseudo distributed, Fully distributed

(ii)Usewebbasedtoolsto monitoryourHadoopsetup.

Experiment 3:Week4:

- 3. Implementthefollowing filemanagementtasksinHadoop:
 - Addingfilesanddirectories
 - Retrievingfiles
 - Deletingfiles

Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities.

Experiment4:Week5:

4. RunabasicWordCount MapReduceprogramtounderstandMapReduceParadigm.

Experiment 5: Week 6:

5. Writeamapreduceprogramthatminesweather data.

Weather sensors collecting data every hour at many locations across the globe gathera large volume of log data, which is a good candidate foranalysis with Map Reduce, since it is semi structured and record-oriented.

Experiment6:Week7:

- 6. UseMapReducetofindtheshortestpathbetweentwopeopleina
- 7. socialgraph.

Hint: Use an adjacency list to model a graph, and for each node store the distance from the originalnode, aswellasa back pointertotheoriginalnode. Usethe mappersto propagatethe distance to the original node, and the reducer to restorethe stateofthe graph. Iterate untilthe target node has been reached.

Experiment7:Week8:

8. ImplementFriends-of-friendsalgorithmin MapReduce.

Hint: Two MapReduce jobs are required to calculate the FoFs for each user in a social network. The first job calculates the common friends for each user, and the second job sorts the common friends by the number of connections to your friends.

Experiment8:Week9:

9. Implement an iterative PageRank graph algorithm in MapReduce. **Hint:** PageRank can be implemented by iterating a MapReduce job until the graph has converged. The mappersare responsible for propagating node PageRank values to their

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

adjacent nodes, and the reducers are responsible for calculating new PageRank values for each node, and for re-creating the originalgraphwiththe updated PageRank values.

IIIB.TechII Semester	DATA VISUALIZATION LAB	L	Т	P	C
	(V231326162)	0	0	3	1.5

Experiment9:Week 10:

10. Performanefficientsemi-joininMapReduce.

Hint: Perform a semi-join by having the mappers load a Bloom filter from the Distributed Cache, and then filter results from the actual MapReduce data source by performing membership queries against the Bloom filter to determine which data source records should be emitted to the reducers.

Experiment10:Week 11:

11. InstallandRunPigthenwritePigLatinscriptsto sort,group,join,project, and filter your data.

Experiment12:Week 12:

12. InstallandRunHivethenuseHiveto create,alter,anddropdatabases,tables, views, functions, and indexes

Course Objectives:

- Tovisualizethedifferent datasetsusinghistograms, linecharts.
- Tounderstand theuseofbarchartsandboxplots.
- TounderstandScatterplots,mosaicplots
- TounderstanddifferentMapvisualizations
- Tolearnadvancedgraphssuchascorrelogram, heatmapand3D graphs.

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

CourseOutcomes: At theendofthecoursestudentwillbeableto

- Visualizethedifferentdatasetsusinghistograms, linecharts.
- Makeuseofbarchartsand boxplotsondifferentdatasets
- ApplyScatterplots, mosaicplotsinRfordifferentdatasets
- ApplydifferentMapvisualizationsinR
- Createadvancedgraphssuchascorrelogram, heatmap and 3D graphs.

List of Experiments:

- 1. a) Load VADeaths(Death Rates in Virginia)dataset in R and visualize the data using different histograms.
 - b) LoadairqualitydatasetinRandvisualizeLaGuardiaAirport'sdialymaximum temperature using histogram.
- 2. LoadAirPassengersdatasetinRandvisualizethedatausinglinechartthatshows increase in air passengers over given time period.
- 3. a)LoadirisdatasetinR,visualizethedatausingdifferentBarChartsandalso demonstrate the use of stacked plots.
 - b) Loadair qualitydatasetin Randvisualizeozoneconcentrationinair.
- 4. a) Load iris dataset in R, visualize the data using different Box plots including group by option and also use color palette to represent species.
 - b) LoadairqualitydatasetinRand visualizeairqualityparametersusingboxplots.
- 5. Visualize iris dataset using simple scatter, multivariate scatter plot and also visualize scatter plot matrix to visualize multiple variables across each other.
- 6. LoaddiamondsdatasetinRandvisualizethestructureindatasetswithlargedata points using hexagon binning and also add color palette then use the
- 7. LoadHairEyeColordatasetinRandplotcategoricaldatausingmosaicplot.
- 8. LoadmtcarsdatasetinRandvisualizedatausingheatmap.
- 9. InstallleafletlibraryinRandperformdifferentmapvisualizations.
- 10. Visualizeirisdatasetusing3dgraphssuchasscatter3d, cloud, xyplot.
- 11. Makeuseofcorrelogramtovisualizedataincorrelationmatrices for irisdataset.
- 12. InstallmapslibraryinRanddrawdifferentmapvisualizations.

WebReferences:

- 1. https://www.analyticsvidhya.com/blog/2015/07/guide-data-visualization-r/
- 2. https://www.geeksforgeeks.org/data-visualization-in-r/

${\bf JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA}\\ {\bf KAKINADA-533003,} {\bf AndhraPradesh,} {\bf India}$

B. TechAl&ML (R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

IIIB.TechIISemester	SOFT SKILLS	L	T	P	C
	(V231326163)	0	1	2	2

Course Objectives:

- ToequipthestudentswiththeskillstoeffectivelycommunicateinEnglish
- Totrainthestudentsininterviewskills, groupdiscussions and presentationskills
- Tomotivatethestudentstodevelop confidence
- Toenhancethestudents'interpersonalskills
- Toimprovethestudents'writing skills

UNIT – **I:Analytical Thinking & Listening Skills:** Self-Introduction, Shaping Young Minds - A Talk by Azim Premji (Listening Activity), Self – Analysis, Developing Positive Attitude, Perception.

Communication Skills: Verbal Communication; Non Verbal Communication (Body Language)

UNIT – **II: Self-Management Skills:** Anger Management, Stress Management, Time Management, Six Thinking Hats, Team Building, Leadership Qualities **Etiquette:**SocialEtiquette,BusinessEtiquette,TelephoneEtiquette,DiningEtiquette

UNIT – **III: Standard Operation Methods:** Basic Grammars, Tenses, Prepositions, Pronunciation, Letter Writing; Note Making, Note Taking, Minutes Preparation, Email & Letter Writing

UNIT-IV: Job-Oriented Skills:Group Discussion, Mock Group Discussions, Resume Preparation, Interview Skills, Mock Interviews

UNIT-V: Interpersonal relationships: Introduction, Importance, Types, Uses, Factors affecting interpersonal relationships, Accommodating different styles, Consequences of interpersonal relationships

Textbooks:

- 1. Barun K.Mitra, Personality Developmentand SoftSkills, Oxford University Press, 2011.
- 2. S.P.Dhanavel, English and Soft Skills, Orient Blackswan, 2010.

Referencebooks:

- R.S.Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S. Chand& Company Ltd., 2018.
- 2. Raman, Meenakshi & Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011.

E-resources:

1. https://swayam-plus.swayam2.ac.in/courses/course-details?id=P_CAMBR_01

KAKINADA-533003, Andhra Pradesh, India

IIIB.TechII Semester	TECHNICALPAPERWRITING	L	T	P	C
	&IPR(V2313261C1)	2	0	0	-

Course Objective:

1. The course will explain the basic related to writing the technical reports and understanding the concepts related to formatting and structuring the report. This will help students to comprehend the concept of proofreading, proposals and practice

UnitI:Introduction: An introduction towriting technical reports, technical sentences formation, using transitions to join sentences, Using tenses for technical writing.

PlanningandStructuring: Planningthereport, identifyingreader(s), Voice, Formattingand structuring the report, Sections of a technical report, Minutes of meeting writing.

Unit II: Drafting report and design issues: The use of drafts, Illustrations and graphics. Finaledits: Grammar, spelling, readability and writing in plain English: Writing in plain English, Jargonand final layoutissues, Spelling, punctuation and Grammar, Padding, Paragraphs, Ambiguity.

Unit III: Proofreadingandsummaries: Proofreading, summaries, Activitiesonsummaries. Presenting final reports: Printed presentation, Verbal presentation skills, Introduction to proposals and practice.

Unit IV: Using word processor: Adding a Table of Contents, Updating the Table of Contents, Deleting the Table of Contents, Adding an Index, Creating an Outline, Adding Comments, Tracking Changes, Viewing Changes, Additions, and Comments, Accepting and Rejecting Changes, Working with Footnotes and Endnotes, Inserting citations and Bibliography, Comparing Documents, Combining Documents, Mark documents final and make them read only., Password protect Microsoft Word documents., Using Macros,

Unit V: Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property

TextBooks:

- 1. Kompal Bansal & Parshit Bansal, "Fundamentals of IPR for Beginner's", 1st Ed., BS Publications, 2016.
- 2. WilliamS.PfeifferandKayeA.Adkins,"TechnicalCommunication:APractical Approach", Pearson.
- 3. Ramappa, T., "IntellectualPropertyRightsUnder WTO", 2ndEd., S Chand, 2015.

HEHRU TECHNOLOGICAL TO THE TEC

JAWAHARLALNEHRUTECHNOLOGICALUNIVERSITYKAKINADA

KAKINADA-533003, Andhra Pradesh, India

B.TechAI&ML(R23-IIIrdYearCOURSESTRUCTURE&SYLLABUS)

ReferenceBooks:

- 1. AdrianWallwork, EnglishforWritingResearchPapers, SpringerNewYork Dordrecht Heidelberg London, 2011.
- 2. DayR, howtoWriteandPublishaScientificPaper,CambridgeUniversity Press(2006)

E-resources:

- 1. https://www.udemy.com/course/reportwriting/
- 2. https://www.udemy.com/course/professional-business-english-and-technical-report-writing/
- 3. https://www.udemy.com/course/betterbusinesswriting/